
Alg2T Warm Up Ch 4 Day 2

One side of a right triangle is (4n - 2) feet long and the side perpendicular to it is (2n + 4) feet long. Which of the following expressions must represent the area, in square feet, of the triangle?

Quiz Quiz Trade

2×*

2/3

Examples: 1) 3x²-6x

(3x)(x-3)2) 8x²+4x

4x (2xrl)

Homework Questions??

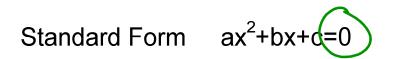
- 4.) (3n+4)(n+1)6.) (3p+1)(2p+1)8.) (5x-4) (3x+2)10.) (7m-3)(2m+1)12.) D 14.) (2r+5)(2r-5)16.) $(4s+1)^2$ 18.) $(8w+9)^2$ 20.) $(5t-3)^2$ 22.) 4(3x+5)(x-2)24.) 2(4v-1)(4v+1)26.) $3(2m-3)^2$ 28.) 7(3x+1)(x-4)
- $30.) -4(2y^2-7y+15)$

*Factoring Activity

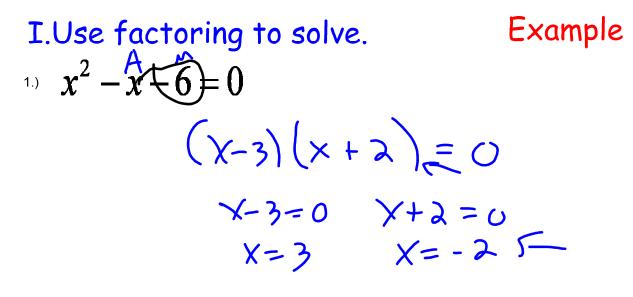
*Blue Triangles

Factoring Day 2		
1.) Factor.	2.) Factor.	
$f(x) = x^2 - 10x + 24$	$\int f(x) = x^2 + x - 72$	
3.) Factor	4.) Factor	
$f(x) = 4x^2 - 9$	$\int f(x) = 2x^2 + 3x + 1$	

Algebra 2 Trig Daily Learning Target Quiz


Alg2T Extra Credit Ch 4 Day 2

13. By factoring the left side, the quadratic equation $2t^2 + Kt + 12 = 0$ can be written as (t-4)(2t-3) = 0. What must be the value of K?


F. -11 G. -8 H. -4 J. -3 K. -2

Chapter 4 Quadratic Functions (4.4/4.5)Solve by factoring and by square roots

Quadratic Equation

KEY CO	NCEPT	For Your Notebook
Zero Pro	duct Property	
Words	If the product of two expressions is zer the expressions equal zero.	o, then one or both of
Algebra	If <i>A</i> and <i>B</i> are expressions and $AB = 0$,	then $A = 0$ or $B = 0$.
Example	If $(x + 5)(x + 2) = 0$, then $x + 5 = 0$ or x or $x = -2$.	x + 2 = 0. That is, $x = -5$
	(X75)(X75=0 X=-5	XFZ) = 0 X+2=(X=-2

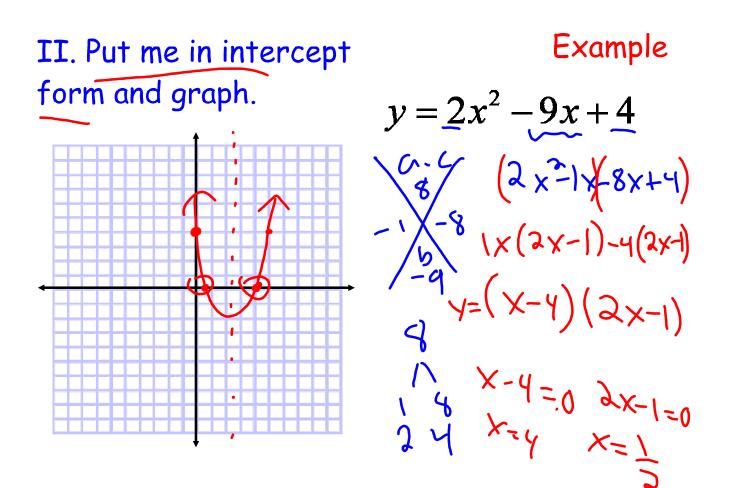
Let's take a look using our graphing Calculators...

I. Use factoring to solve.

Example

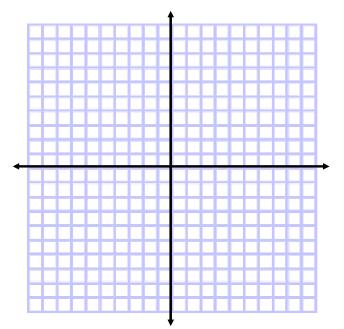
2)
$$x^{2} - x = 42$$
 $ax^{2} + bx + (= 0)$
 $x^{2} - |x - 4|^{2} = 0$
 $(x - 7)(x + 6) = 0$
 $x = 7$ $x = -6$

I. Use factoring to solve. 3.) $16x^2 = 8x$ -8x - 8x $16x^2 = 8x$ -8x - 8x $16x^2 - 8x = 0$ 8x (2x-1) = 0 8x = 0 8x = 0 2x - 1 = 0 +1 + 1 2x = 1x = 1


Example

I. Use factoring to solve. Example
(a)
$$3x^2 - 8x = -x - 2$$

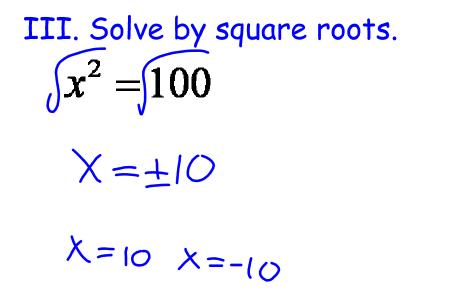
 $+x + 2 + x + 2$
 $3x^2 - 7x + 2 = 0$
 $(3x^2 - 6x)(-1x + 2 = 0)$
 $3x(x-2) - 1(x-2) = 0$
 $(x-2)(3x-1) = 0$
 $(x-2)(3x-1) = 0$
 $x = 2$
 $x = 1$
 $3x = 1$
 $3x = 1$


Use factoring to solve.

Example

5.) $4x^2 = -4x - 1$

II. Put me in intercept form and graph.



$$y = 3x^2 - 9x + 6$$

Solving Practice

Worksheet -What is the title of this picture? (15 minutes)

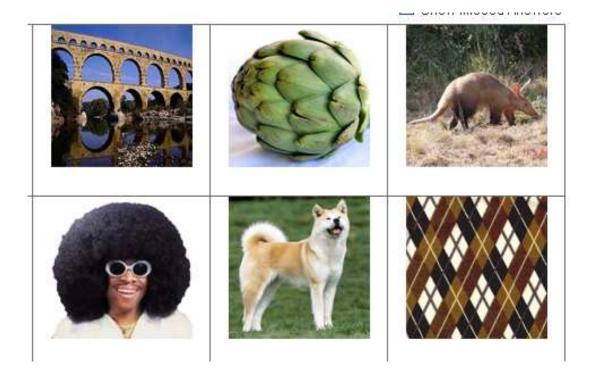
KEY CONCEPT	For Your Notebook
Properties of Square Roots $(a > 0, b > 0)$	
Product Property $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ Ex	ample $\sqrt{18} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}$
Quotient Property $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ Ex	ample $\sqrt{\frac{2}{25}} = \frac{\sqrt{2}}{\sqrt{25}} = \frac{\sqrt{2}}{5}$
12,5	
V25 5	118
125 J	6
	1910
	2 (2
123_5 52	25 6
123_5 Ja Va Va Ja	
しんしい	า
= 12 15 12	
· [4] 2	

III. Solve by square roots.

Example

$$2\underline{x}^{2} + 1 = 51$$

$$-(-)$$


$$\frac{2}{2}x^{2} - 50$$

$$\int_{X} x^{2} = 50$$

$$\int_{X} x^{2} = 50$$

$$\int_{X} x^{2} = 50$$

Things that start with A

III. Solve by square roots.

$$3(x-4)^{2} = 75$$

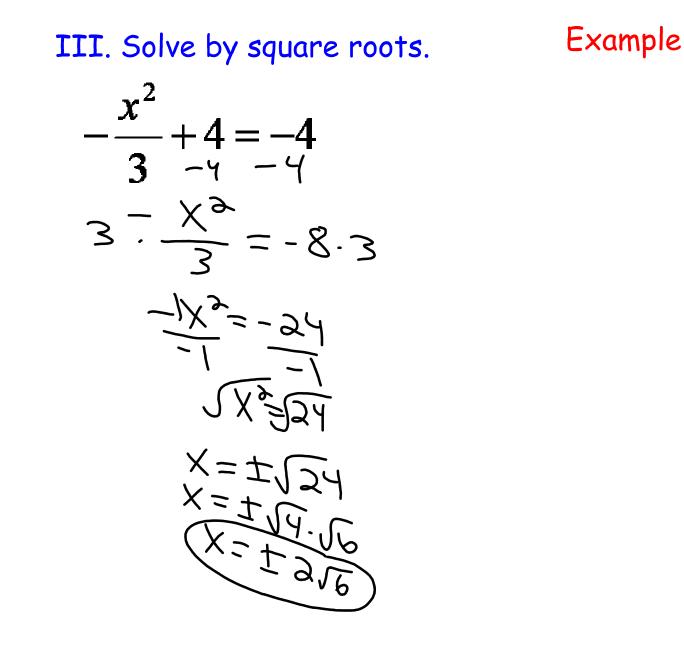
$$3(x-4)^{2} = 75$$

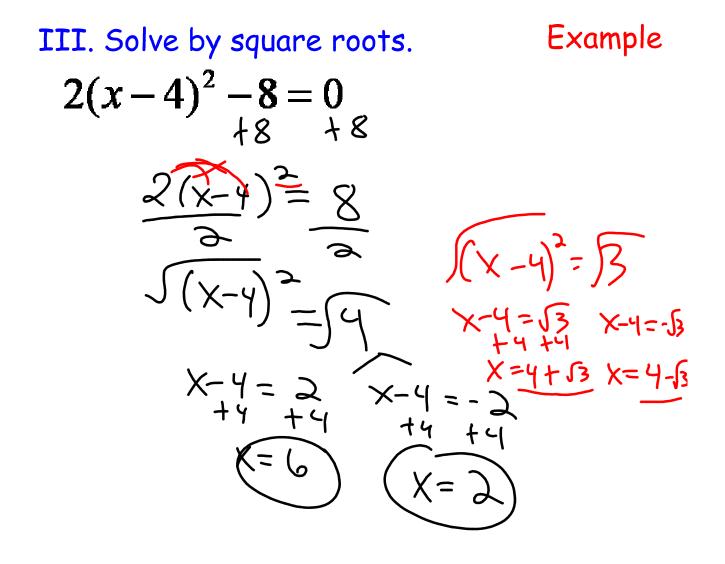
$$3(x-4)^{2} = 5$$

$$(x-4)^{2} = 5$$

$$(x-4)^{$$

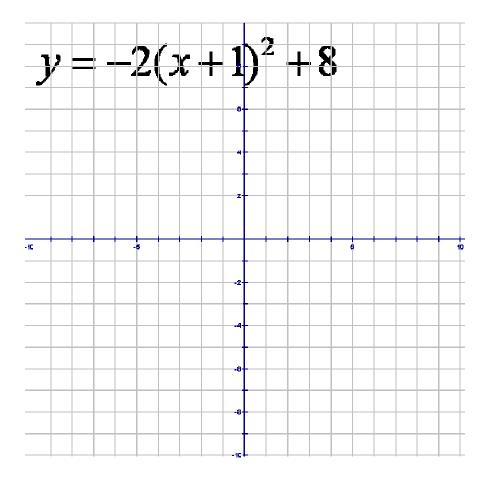
III. Solve by square roots.


Example


$$6x^{2} + 15 = 123$$

$$-15 - 15$$

$$\frac{6x^{2}}{5} - 108$$


$$\frac{6x^{2}}{5} = 108$$

 $-2(x+1)^2+8=0$ Example IV. X-intercepts?

And your homework: Chapter 4 Day 2

Finish WS